Renewable Energy

Renewable Energy 

Renewable energy is energy from renewable resources that are naturally replenished on a human timescale. Renewable resources include sunlight, wind, the movement of water, and geothermal heat. Although most renewable energy sources are sustainable, some are not. For example, some biomass sources are considered unsustainable at current rates of exploitation. Renewable energy is often used for electricity generation, heating and cooling. Renewable energy projects are typically large-scale, but they are also suited to rural and remote areas and developing countries, where energy is often crucial in human development. Renewable energy is often deployed together with further electrification, which has several benefits: electricity can move heat or objects efficiently, and is clean at the point of consumption. In addition, electrification with renewable energy is more efficient and therefore leads to significant reductions in primary energy requirements.​

Wind Power

Air flow can be used to run wind turbines. Modern utility-scale wind turbines range from around 600 kW to 9 MW of rated power. The power available from the wind is a function of the cube of the wind speed, so as wind speed increases, power output increases up to the maximum output for the particular turbine. Areas where winds are stronger and more constant, such as offshore and high-altitude sites, are preferred locations for wind farms. Typically, full load hours of wind turbines vary between 16 and 57 percent annually but might be higher in particularly favorable offshore sites.

Hydro Power

Since water is about 800 times denser than air, even a slow flowing stream of water, or moderate sea swell, can yield considerable amounts of energy. Water can generate electricity with a conversion efficiency of about 90%, which is the highest rate in renewable energy. There are many forms of water energy.
Much hydropower is flexible, thus complementing wind and solar. Wave power, which captures the energy of ocean surface waves, and tidal power, converting the energy of tides, are two forms of hydropower with future potential; however, they are not yet widely employed commercially. A demonstration project operated by the Ocean Renewable Power Company on the coast of Maine, and connected to the grid, harnesses tidal power from the Bay of Fundy, location of the world's highest tidal flow. Ocean thermal energy conversion, which uses the temperature difference between cooler deep and warmer surface waters, currently has no economic feasibility.

Bioenergy

Biomass is biological material derived from living, or recently living organisms. It commonly refers to plants or plant-derived materials. As an energy source, biomass can either be used directly via combustion to produce heat, or indirectly after converting it to various forms of biofuel in solid, liquid or gaseous form. Conversion of biomass to biofuel can be achieved by different methods which are broadly classified into: thermal, chemical, and biochemical methods. Wood was the largest biomass energy source as of 2012; examples include forest residues – such as dead trees, branches and tree stumps, yard clippings, wood chips and even municipal solid waste. Industrial biomass can be grown from numerous types of plants, including miscanthus, switchgrass, hemp, corn, poplar, willow, sorghum, sugarcane, bamboo and a variety of tree species, ranging from eucalyptus to oil palm (palm oil) .

Geothermal Energy

High temperature geothermal energy is from thermal energy generated and stored in the Earth. Thermal energy is the energy that determines the temperature of matter. Earth's geothermal energy originates from the original formation of the planet and from radioactive decay of minerals. The geothermal gradient, which is the difference in temperature between the core of the planet and its surface, drives a continuous conduction of thermal energy in the form of heat from the core to the surface. The adjective geothermal originates from the Greek roots geo, meaning earth, and thermos, meaning heat.
The heat that is used for geothermal energy can be from deep within the Earth, all the way down to Earth's core – 6,400 kilometers (4,000 mi) down. At the core, temperatures may reach over 5,000 °C (9,030 °F). Heat conducts from the core to the surrounding rock. Extremely high temperature and pressure cause some rock to melt, which is commonly known as magma. Magma convects upward since it is lighter than the solid rock. This magma then heats rock and water in the crust, sometimes up to 371 °C (700 °F).

Solar Energy

Solar thermal energy (STE) is a form of energy and a technology for harnessing solar energy to generate thermal energy for use in industry, and in the residential and commercial sectors.
Solar thermal collectors are classified by the United States Energy Information Administration as low-, medium-, or high-temperature collectors. Low-temperature collectors are generally unglazed and used to heat swimming pools or to heat ventilation air. Medium-temperature collectors are also usually flat plates but are used for heating water or air for residential and commercial use.
High-temperature collectors concentrate sunlight using mirrors or lenses and are generally used for fulfilling heat requirements up to 300 deg C / 20 bar pressure in industries, and for electric power production. Two categories include Concentrated Solar Thermal (CST) for fulfilling heat requirements in industries, and Concentrated Solar Power (CSP) when the heat collected is used for electric power generation. CST and CSP are not replaceable in terms of application

Solar Testing & Photovoltaic (PV) Systems

Accurate-precision quality assurance of performance and reliability of photovoltaic modules, solar panels, AC modules, charge controllers, photovoltaic power supplies, inverters, converters, accessories and components.
From PV modules and system components to solar thermal and reliability testing, Intertek is your comprehensive source for all your PV quality assurance, testing, verification and certification needs. Our global network of experts will guide you through every step of the process. We help you streamline your efforts and improve efficiency to get your product into the hands of customers faster than ever before.
We understand that one size does not fit all. Our experts work with you to understand your needs and develop custom solutions that fit your organization and goals. We can support validation of your product for financial institutions, governments, buyers and investors. Our global accreditation, combined with our world-renowned services, gives you a competitive edge in designing and validating the performance, reliability and uptime of your solar products.

Photovoltaic (PV) Modules
Bankability
Performance testing
Balance of System Components
Renewable Energy Field Services
Solar Thermal System Testing
Auditing and Systems Certification